Say, A and B are libraries with 1000 books.
In the beginning, x0โ=[0.50.5โ]
Now, after 1 month, x1โ=[0.8โ
0.5+0.3โ
0.50.2โ
0.5+0.7โ
0.5โ]=[0.80.2โ0.30.7โ][0.50.5โ]=Px1โ
P=[0.80.2โ0.30.7โ]โ
Now, after 2 months, x2โ=Px1โ=P2x0โ
โฎ
Now, after k months, xkโ=Pkx0โ
Steady State
Find the steady state of P=[0.80.2โ0.30.7โ].
PqโPqโโqโPqโโInโqโ(PโInโ)qโ([0.80.2โ0.30.7โ]โ[10โ01โ])qโ[โ0.20.2โ0.3โ0.3โ]qโ{โ2x1โ2x1โโ+3x2โโ3x2โโ=0=0โ{x1โ=3,x2โ3+21โ[32โ]qโโ=qโ=0=0=0=0=0=2}=qโ=[53โ52โโ]โโ
If a matrix is regular stochastic, it implies the existence of a steady state. (The converse is not necessarily true)
Convergence
We have x1โ,x2โ,x3โ,โฆxkโ. We want to know if while kโโ xkโ will converge to a steady state.
If P is a regular stochastic matrix (vocabulary), then P has a unique steady-state vector qโ, and xk+1โ=Pxkโ converges to qโ as kโโ.
Say P has 2 eigenvalues (ฮป1โย andย ฮป2โ) and eigenvectors (v1โย andย v2โ).
xk+1โx0โx1โx1โx1โx2โx1โxkโโ=Pxkโ=c1โv1โ+c2โv2โ=Px0โ=P(c1โv1โ+c2โv2โ)=c1โฮป1โv1โ+c2โฮป2โv2โ=Px1โ=P(c1โฮป1โv1โ+c2โฮป2โv2โ)=c1โ(ฮป1โ)kv1โ+c2โ(ฮป2โ)kv2โโ=c1โPv1โ+c2โPv2โ=c1โ(ฮป1โ)2v1โ+c2โ(ฮป2โ)2v2โโ
x0โ[10โ]c1โโ=c1โv1โ+c2โv2โ=c1โ[10โ]+c2โ[1โ1โ]=1โc1โโ=0โ
xkโ=v1โโ