Imagine a matrix A, Partitioned it could look like this,

A&= \begin{bmatrix} \begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix} &\begin{bmatrix} 5\\6\\6 \end{bmatrix} \\\begin{bmatrix} 7&9&1 \end{bmatrix} & \begin{bmatrix} 6 \end{bmatrix} \end{bmatrix} \\ &=\begin{bmatrix} I_3 & U \\ V & X \end{bmatrix} \end{aligned}

We can even perform matrix multiplication,

Find the Inverse

Compute equations the inverse .

So, putting this back into a matrix: