Imagine a matrix A,
A=β1007β0109β0011β5666ββ
Partitioned it could look like this,
A&= \begin{bmatrix} \begin{bmatrix} 1&0&0\\0&1&0\\0&0&1 \end{bmatrix} &\begin{bmatrix} 5\\6\\6 \end{bmatrix} \\\begin{bmatrix} 7&9&1 \end{bmatrix} & \begin{bmatrix} 6 \end{bmatrix} \end{bmatrix} \\
&=\begin{bmatrix} I_3 & U \\ V & X \end{bmatrix}
\end{aligned}
We can even perform matrix multiplication,
[10β01β11β]β200ββ1β11ββ
β=[I2ββXβ][UVβ]=I2βU+XY=[20ββ1β1β]+[11β][0β1β]=[20ββ1β1β]+[00β11β]=[20β00β]β
Compute equations the inverse [A0βBCβ].
[A0βBCβ][WYβXZβ]=I=[Inβ0β0Inββ]
0W+CYCYCβ1CYYβ=0=0=Cβ10=0ββ
0X+CZCβ1CZZβ=Inβ=Cβ1Inβ=Cβ1ββ
WeΒ knowΒ Y=0Β asΒ itΒ wasΒ calculatedΒ above
AW+BYAW+B0Aβ1AWWβ=Inβ=Inβ=Aβ1Inβ=Aβ1ββ
AX+BZAβ1AXXXβ=0=βAβ1BZ=βAβ1BZ=βAβ1BCβ1ββ
So, putting this back into a matrix:
[A0βBCβ]β1=[Aβ10ββAβ1BCβ1Cβ1β]β