A Leontif Input-Output Model is a model that describes a economy whos’ parts need resources to provide resources.
is the consumption matrix. Entries of are , with , and units consumed units left after internal consumption
is the external demand. is the produced quantity.
So for an economy we can derive the formula,
Supposes we have a economy that looks like so, E, W, M all produce something but D only consumes.
So we know that D is our Our usages are all the black arrows in the diagram. So we need to find
First define We can construct
\begin{align*} C\vec{x}&=x_e\begin{bmatrix} 20\% \\ 10\% \\ 10\% \end{bmatrix}+x_w\begin{bmatrix} 0\% \\ 20\% \\ 10\% \end{bmatrix}+x_m\begin{bmatrix} 0\% \\ 0\% \\ 20\% \end{bmatrix}\\ C\vec{x}&=x_e\begin{bmatrix} .2 \\ .1 \\ .1 \end{bmatrix}+x_w\begin{bmatrix} 0 \\ .2 \\ .1 \end{bmatrix}+x_m\begin{bmatrix} 0 \\ 0\\ .2 \end{bmatrix}\\ C&=\begin{bmatrix} .2 &0&0 \\ .1 &.2&0\\ .1 &.1&.2\end{bmatrix} \end{align*} }$$ We can construct $\textcolor{red}{\text{ external demand},\vec{d}.}$ $$\textcolor{red}{ \begin{bmatrix} 80 \\ 70 \\ 160 \end{bmatrix} }Now we can put this in our formula to get