T:RnβRmΒ isΒ linearΒ ifΒ {T(u+v)T(cv)β=T(u)+T(v)=cT(v)βββ
Create a 2Γ2 matrix A that applies a linear transformation that rotates by an angle ΞΈ counterclockwise
AT(e1ββ)T(e1ββ)a1ββT(e2ββ)T(e2ββ)a2βββ=[a1ββ,a2ββ]=a1ββ=[abβ]=[cosΞΈsinΞΈβ]=a2ββ=[abβ]=[βsinΞΈcosΞΈβ]β=[cosΞΈsinΞΈβ]=[βsinΞΈcosΞΈβ]β
A=[cosΞΈsinΞΈββsinΞΈcosΞΈβ]β
Reflections
Through x1ββaxis
T([11β])=[1β1β]
So,
A=[10β0β1β]
Through x2ββaxis
T([11β])=[β11β]
So,
A=[β10β01β]
Through x2β=x1β
T([10β])T([01β])β=[01β]=[10β]β
So,
A=[01β10β]
Through x2β=βx1β
T([10β])T([01β])β=[0β1β]=[β10β]β
So,
A=[0β1ββ10β]
Contractions and Expansions
Horizontal
Contractions (β£kβ£<1)
T([10β])T([01β])β=[k0β]=[01β]β
So,
A=[k0β01β]
Expansions (β£kβ£>1)
T([10β])T([01β])β=[k0β]=[01β]β
So,
A=[k0β01β]
Vertical
Contractions (β£kβ£<1)
T([10β])T([01β])β=[10β]=[0kβ]β
So,
A=[10β0kβ]
Expansions (β£kβ£>1)
T([10β])T([01β])β=[10β]=[0kβ]β
So,
A=[10β0kβ]
Shears
Horizontal Shear
Left(k<0)
T([10β])T([01β])β=[10β]=[k1β]β
So,
A=[10βk1β]
Right(k>0)
T([10β])T([01β])β=[10β]=[k1β]β
So,
A=[10βk1β]
Vertical Shear
Down(k<0)
T([10β])T([01β])β=[1kβ]=[01β]β
So,
A=[1kβ01β]
Up(k>0)
T([10β])T([01β])β=[1kβ]=[01β]β
So,
A=[1kβ01β]
Projections
On to the x1ββAxis
T([10β])T([01β])β=[10β]=[00β]β
So,
A=[10β00β]
On to the x2ββAxis
T([10β])T([01β])β=[00β]=[01β]β
So,
A=[00β01β]